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Abstract--Results o fan analytical study on the heat flow rate in two-dimensional heat-conduction problems 
are presented. For conduction problems which satisfy some symmetry properties it is proven that the heat 
flow rate does not depend on the shape or dimensions of the geometry. For these problems the heat flow 
rate can be c, alculated without solving the distribution of the diffusing quantity. For the general problem 
it is shown that there is always a line which intersects isolines at a constant angle. Numerical results are 

presented to show the significance of the developed concepts. 

INTRODUCTION 

The diffusion of a physical quantity, such as tem- 
perature or concentration, is governed by the equation 

VD~V~b = 0 

in which ~ is the transported quantity and D~ the 
corresponding diffusion coefficient. Here, it is 
assumed that the problem is stationary and that no 
volume sources are present. If D~ is independent of 
the position, the problem reduces to a Laplace equa- 
tion for quantity ~b. 

Analytical solutions for this equation are available 
for a number of cases. Standard textbooks on heat 
conduction provide coverage of a large variety of ana- 
lytical methods for solving heat-conduction problems 
[1, 2]. Generally, the presented analytical methods 
are only applicable or solvable for a confined set of 
problems and describe the problem in Cartesian, cyl- 
indrical or spherical coordinate systems. In addition, 
the methods aim to provide a full solution of the 
problem, viz. the distribution of quantity ~b, whereas 
in general we are only interested in a specific aspect of 
the solution, e.g. the heat flow rate. Nowadays, most 
practical diffusion problems can be solved accurately 
by numerical methods and, consequently, the need for 
analytical solutions has decreased. Still, the analytical 
study of diffusion problems can increase insight into 
the behaviour and properties of the diffusion process. 
The obtained solutions may be useful for various prac- 
tical problems. 

This paper considers two-dimensional heat-con- 
duction problems and, consequently, D~ represents 
the thermal diffusivity a = ,~/pCp and tk the tem- 
perature T. Here, 'we focus on the heat flow rate in a 
geometry bounded by two isothermal walls which are 
connected by adiabatic walls. Obviously, the obtained 
results are directly applicable to corresponding mass- 

diffusion problems due to the correspondence between 
the equations for energy and mass diffusion. First, 
it is shown that the heat flow rate can be obtained 
analytically if the problem satisfies some symmetry 
properties. Afterwards, the general conduction prob- 
lem is considered in order to show the existence of a 
special line in conduction problems. Finally, the 
insights obtained are discussed and enlightened by 
numerical results. 

THE TWO-DIMENSIONAL HEAT-CONDUCTION 
PROBLEM 

In the heat-conduction problems under consider- 
ation, the geometry is infinitely long in the third 
dimension. Its cross-section in the x-y-plane is 
bounded by two arbitrarily shaped isothermal walls 
which are connected by arbitrarily shaped adiabatic 
walls. By assuming that there are no gradients in the 
third dimension, the problem reduces to a two-dimen- 
sional heat-conduction problem. The thermal diffu- 
sivity of the material in the geometry (a) is assumed 
to be constant. 

If the geometry and boundary conditions satisfy the 
following two properties, we call the problem sym- 
metrical: 

(1) the geometry is line symmetric with respect to 
an axis of symmetry d; 

(2) the boundary conditions for the temperature 
are skew-symmetric, i.e. isothermal walls are mirror 
images of adiabatic walls. 

An example of a symmetrical heat-conduction prob- 
lem is depicted in Fig. 1. Obviously, the set of diffusion 
problems satisfying these properties with respect to 
the symmetry is extensive. Although some of the prob- 
lems can be solved in a straightforward way, it is not 
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NOMENCLATURE 

a thermal diffusivity [m 2 s 1] fl 
Cp specific heat at constant pressure 

[J kg i K-l]  AT 
D~ diffusion coefficient for quantity ¢ 2 
H length of isothermal wall [m] 4, q 
L length of enclosure wall [m] p 
n unit normal vector 
Q heat flow rate per unit length in third ~0 

dimension [W m - q  ~b 
T temperature [K] 
x,y Cartesian coordinates [m]. 

angle of intersection between 
geometrical diagonals [°] 
temperature difference [K] 
thermal conductivity [W m -  ~ K -  '] 
general coordinate 
density [kg m -3] 
unit tangential vector 
angle of inclination [o] 
general diffusing quantity 
flux function [W m-l].  

Greek symbols 
angle of intersection between 
intersectional-diagonal and isotherms [°] 

Subscripts 
c at the cold wall 
h at the hot wall. 

always easy to determine analytically the solution for 
an arbitrarily shaped geometry. 

In this paper the heat flow rate through the iso- 
thermal walls is calculated by using the symmetry of 
the problem. The actual solution of the temperature 
distribution is not considered. It will be proven that, 
for all symmetrical problems, the heat flow rate (per 
unit length in the third dimension) Q satisfies 

a = IA T  (1) 

in which AT is the temperature difference between 
the isothermal walls and 2 the thermal conductivity. 
Apparently, the heat flow rate does not depend on the 
shape or dimensions of the geometry. 

In the proof we use a flux function W for the heat 
flux in analogy with the stream function in hydro- 
dynamics. For a line segment ds with unit normal 
vector n, dW is given by 

d ~  = - 2VT" nds. (2) 

The relation between T and W is analogous to the 
relation between the potential and stream function in 
potential theory : 

8~ ic~T 8uL OT 
t ~  - =  c~y and 8y 28x" (3) 

The property 

T adiabatic 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  d 

Tc 

Fig. 1. Example of a symmetrical two-dimensional heat- 
conduction problem. 

VqJ" V T =  0 

shows that lines q' = constant are perpendicular to 
isotherms. 

PROOF OF Q =  I A T  IN SYMMETRICAL 
PROBLEMS 

In order to prove the relation Q = 2AT for sym- 
metrical problems, we will focus on the heat-con- 
duction problem in a rhombus. In Fig. 2, the geometry 
and boundary conditions under consideration are pre- 
sented. The proof is divided into two steps. First, we 
will show that isotherms intersect the symmetry line d 
at an angle of 45 ° . By using this property, we can 
easily prove relation (1). 

Theorem A 
Isotherms for the heat-conduction problem pre- 

sented in  Fig. 2 intersect the symmetry line d at an 
angle of 45 ° . 

S 

Boundary conditions: 
$1: T=Th 

S~: (OT/Oy) =0 

$3: T=To 

$ 4 :  (OZ/Oy)  = 0 

i 
L , a 

Fig. 2. Heat-conduction problem in a symmetrical geometry 
(rhombus). 
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~=0  T=T, 

or_ 0 On- T=Th 

(a) (b) 

l . x  / 

/ 

d 
/ 

i~=cons~t 
(c) (d) 

Fig. 3. Illu,;trations for the proof of Q = 2AT in a rhombus. (a) Original problem, isotherms T~. (b) 
Mirrored problem, isotherms T2. (c) Orthogonal isotherms (T1, T2). (d) Symmetry line d. 

Proof 
In Fig. 3(a) the solution Tl of the conduction prob- 

lem is given by drawing isotherms. Consider the heat- 
conduction problem obtained by mirroring the 
boundary conditions with respect to the symmetry 
line d [see Fig. 3(b)]. The equation describing the 
temperature distribution 7'2 is given by 

V 2 T2 = 0 with boundary conditions : 

.aT2 = 0  0T2 
$1 • an $3 :-~-n = 0 

S2 : T2 = Th S4 : T2 = Tc 

The flux function of the original problem satisfies 

V2WI = 0 with boundary conditions : 

~kIJ 1 $3 . OLI/I 
S l : ~ - n  = 0  ' On = 0  

$2 :Wl = 0 $4 :qJl = Q 

Consequently, the solutions for T2 and Wl are related 
by 

T2-Tc  kIJ 1 - Q  

AT Q 

and the lines T2 =constant  and Wl =constant  
coincide. Since the lines WI = constant are orthogonal 
to the lines 7"1 = constant, the isotherms for T~ and 
T2 are orthogonal [see Fig. 3(c)]. Since isotherms for 
T2 can be obtained from mirroring the isotherms for 
Tl, the fact that these lines are orthogonal shows us 

that the isotherms have to intersect the symmetry line 
at an angle of 45 ° . 

Theorem B 
The heat flow rate through the hot wall is given by 

Q = 2AT. 

Proof 
Since the isotherms Tl intersect the symmetry line 

d at an angle of 45 °, we have on d 

n - V T =  , ' V T  

in which n is the unit normal vector a n d ,  the unit 
tangential vector on d [see Fig. 3(d)]. Integration over 
d gives 

fdn 'VTds= fd~'VTds 

~ I dtP I dTds 

O . . . .  AT 
2 

since by integrating over d we integrate both from 
T =  Thto T =  Tc and from q j = 0 t o q  j = Q. 

Obviously, the same proof is applicable to all poten- 
tial and heat-conduction problems with the same sym- 
metry in the geometry and boundary conditions. A 
few examples of symmetrical heat-conduction prob- 
lems are given in Fig. 4. 
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i 

T~ 

Fig. 4. Examples of heat-conduction problems for which Q = 2AT. 

isothermal wall 

adiabatic wall 
symmetry line 

The proof is not applicable to the general heat- 
conduction problem in two dimensions. However, as 
long as the geometry has one hot and one cold wall 
which are connected by adiabatic walls, there is always 
a line d which intersects the isotherms at a constant 
angle. This is shown in the next section. If the inter- 
section angle is not known beforehand, we cannot find 
the heat flow rate from this line analytically. 

A SPECIAL LINE IN TWO-DIMENSIONAL 
CONDUCTION PROBLEMS 

In the previous section it was shown that for a set 
of heat-conduction problems, the heat flow rate can 
be calculated analytically and is independent of the 
dimensions of the geometry: Q = 2AT. The fact that 
the symmetry line of the geometry intersects the iso- 
therms at a constant angle of 45 ° is essential in the 
presented proof. If  the line symmetry of the geometry 
is absent, the proof is not applicable. In this section, 
we consider the general two-dimensional heat-con- 
duction problem form geometry consisting of one hot 
and one cold wall connected by adiabatic walls. It will 
be shown that there is still a line which intersects 
the isotherms at a constant angle, the 'intersectional- 
diagonal'. If  the intersection angle is not known 
beforehand, the heat flow rate cannot be calculated. 

Consider the heat-conduction problem of Fig. 5. 
The geometry is not necessarily symmetrical. Again, 
we use the flux function q~, as defined in equation (2). 
The boundary conditions for the Laplace equations 
for Tand  ~ (V2T = V2~F = 0) are given by 

for T: 

forW: 

c~T 
S I : T = T h  S2:~n  = 0 

aT 
S3"T= Tc S 4 : ~ n = 0  

Oq~ 
Sl :-.~-n = 0 52 :~xJ = 0 

OW 
S 3 : ~ - n = 0  S 4 : W = Q .  

Now consider the transformation (x, y) -o (~, r/), with 

W T - T ~  
~ = 2 A T  and ~/= AT 

as depicted in Fig. 6. By relations (3), we can see that 

d_{= at/ and d ~ =  Orl 
Ox Oy Oy ax ' 

i.e. that the mapping is conformal (see e.g. refs. [3, 
4]). The diagonal d of the rectangle in the (~, r/)-plane 
intersects the lines r /=  constant at a constant angle. 
Since the lines r /=  constant correspond to isotherms 
in the original problem and since angles are conserved 
by conformal mappings, the line d in the (x, y)-plane 
intersects isotherms at a constant angle. The line d is 
not necessarily straight in the (x, y)-plane. 

The line d connects the intersection points of the 
isothermal and adiabatic walls and might be called 
an 'intersectional-diagonal'. The angle of intersection 
between d and isotherms is given by 

Boundary conditions: 
& : T=Th 

$2: (OT/On)=O 

$3: T=T~ 

S4: (aT/an)--o 
& 

r / ,x  ,92 

Fig. 5. Non-symmetrical two-dimensional heat-conduction 
problem. 
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$1 

d 
S4 

3 

& 

=~ 

1 x sl 

0 Sa --q-- 

Fig. 6. Transformation from (x, y)- to (~, ~/)-coordinate system. 

= tan-~ 2AT 
a 

and is not always known beforehand. If the geometry 
is line symmetric, the intersectional-diagonal 
coincides with the symmetry line and ct = 45 °. For 
these geometries we: again have the previously derived 
relation Q = 2AT. 

DISCUSSION 

In order to show the significance of the proofs pre- 
sented above, we take a closer look at the heat-con- 
duction problem for some geometries. For these prob- 
lems the temperature distribution is solved 
numerically. By using a coordinate-invariant for- 
mulation of the diffusion problem [5], the Laplace 
equation for T is solved in a boundary-fitted coor- 
dinate system [6]. The equations are discretized by 
using a finite volume method as described by Patankar 
[7]. 

For the rhombic, geometry of Fig. 2, calculations 
have been performed in which the inclination angle of 
the isothermal walls ~o is changed from 0 ° to 60 °. The 
resulting temperature distributions are presented in 

Fig. 7 by plotting isotherms for the temperature levels 
( T - T c ) / A T =  0(0.05)1. The solution for q~ = 0 ° is 
straightforward; the linear temperature distribution 
gives rise to a heat flow rate Q = 2(AT/L)L = 2AT. 
For tp ~ 0 ° the isotherms are curved, since they are 
orthogonal to the adiabatic walls. Consequently, the 
local heat-flux distribution at the isothermal wails is 
not uniform. In comers with acute angles between the 
isothermal and adiabatic walls the flux is relatively 
low, whereas in corners with obtuse angles the flux is 
relatively high. Due to the symmetry in the problem, 
however, the heat flow rate is given by Q = 2AT for 
all ¢. For ~o = 45 °, this phenomenon has already been 
observed by Demird~i6 et al. [8] from their numerical 
calculations. 

If the dimension of the isothermal walls is larger 
than the dimension of the adiabatic walls, we obtain 
a parallelogram and the line symmetry disappears. 
Calculations have been performed for a par- 
allelogrammic geometry in which the dimension of the 
isothermal walls (H) is different from the dimension 
of the adiabatic walls (L). For ¢p = 0 °, we again have 
the linear decrease of T between the hot and cold wall, 
giving Q = (H/L)2AT. In Fig. 8 the heat flow rate 
through the isothermal walls is given as a function of 

~p=0 ° 

T~ T~ T 

~o = 4 5  o 9 = 6 0  ° 

Fig. 7. Solutions of the heat-conduction problem in a rhombic geometry. 
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5. 4.J 
3. 

Q~ ~ 2. 

1. 

O{ 

- - H / L  = 1 / I]  
---- H / L  = 1.5 /H 

H 

- - H I L  = 2 iYI/ / 
- - -  H I L  = 3 / / J  

J/l~ 

I I 
30. 60. 90. 

~o 

Fig. 8. Heat flow rate in parallelograms with aspect ratios 
H/L = 1, 1.5, 2 and 3 as a function of the inclination angle 

of the isothermal walls. 

the inclination angle of  the isothermal walls go for 
H/L  = 1, 1.5, 2 and 3. Whereas Q ,,~ (H /L )2AT  for 
go < 45 °, the heat flow rate increases rapidly if  go 
approaches 90 ° and H > L. Indeed, the situation 
go "f 90 ° and H > L gives rise to a 'short-circuit '  for the 
heat transfer and we have Q --* o0. I f  the isothermal 
walls had been shorter than the adiabatic walls, the 
isothermal walls would not have touched if go T 90° 

and we would have Q ~0. Only for the rhombic 
geometry ~° do the isothermal walls touch at a single 
point for go = 90 °, giving a finite, positive heat flow 
rate. 

For  the parallelograms under consideration there 
still is a line d which intersects the isotherms at a 
constant angle, as proven previously. By calculating 
the temperature distribution for the original problem 
and for the problem in which the boundary conditions 
for T are reversed (see Fig. 3), two mutually orthog- 
onal sets of  isotherms appear. In fact, or thogonal  grids 
for numerical calculations can be obtained this way 
[9]. We now have isotherms TI and T2 in which lines 
T2 = constant correspond to lines qJ~ = constant. By 
connecting the points of  intersection of  identical iso- 
therms T~ and T2, the line which intersects the iso- 
therms at a constant angle appears. In Fig. 9 this line 
d is drawn for a parallelogram with H/L  = 2 and 
go = 45 °. The line d is not  straight. The intersection 
angle is not known beforehand, but can be obtained 
from the calculated value of  Q. In the case of  H/L  = 2 
and go = 45 ° we find ~ ~ 23 °. A second line d' can be 
obtained in the same way and is added in the plot. 

Figure 10 shows that the angle of  intersection 
between the intersectional-diagonals d and d '  (2~) 

d adiabatic d 

/ / 

adiabatic 
Fig. 9. Two lines in a parallelogram which intersect isotherms at a constant angle. 

d' d diagonal 1 diagonal 2 

I I s  i • 

I / p / . 

/ J  I t i  t 

/ .  y / -  / 
Fig. 10. Correspondence between intersection angle of intersectional-diagonals (2:0 and intersection angle 

of geometrical diagonals (fl). 
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102 / 
a H / L  = 1.5 / / ~  
+ H / L  = 2 

o H / L  = 3 . , ~  

cota 101 - - c o t a = [ c o ~  

10~1~ 101 102 
COt (~/2) 

Fig. 11. Intersection angle between intersectional-diagonal 
and isotherms (ct) as a function of half the intersection angle 
between geometrical diagonals (fl/2) for parallelograms with 

H/L = 1.5, 2 and 3. 

approximately equals the angle of intersection 
between the geometrical diagonals of the parallelo- 
gram (fl). Due to the proven relation Q / 2 A T  = cot 
ct, an estimation fo:r the heat flow rate in a parallelo- 
gram is given by 

Q ~ 2ATcot (fl/2). 

In Fig. 11, the calculated intersection angle between 
the intersectional-diagonal and isotherms (ct) is plot- 
ted as a function of half the intersection angle between 
the geometrical diagonals (fl/2). The plot shows that 
an even better estimation for the heat flow rate is given 
by 

Q ~ 2AT[cot (fl/2)] 09359 

which gives rise to a maximum error of 8% for 
1 <<, H / L  <~ 3 and I,~1 ~< 85 °. 

CONCLUSION 

The two-dimensional potential problem has been 
considered by studying the heat-conduction problem 

in a differentially heated geometry. The geometry is 
bounded by two isothermal walls which are connected 
by adiabatic walls. For the heat-conduction problem 
in a symmetrical geometry with 'skew-symmetric' 
boundary conditions for the energy equation, the heat 
flow rate has been proven to satisfy Q = 2AT, i.e. 
the heat flow rate does not depend on the shape or 
dimensions of the geometry. For non-symmetric prob- 
lems it has been shown that there is always a line 
through the geometry (an 'intersectional-diagonal') 
which intersects isotherms and flux lines at a constant 
angle. The obtained results have been enlightened by 
numerical results for the diffusion problem in rhombic 
and parallelogrammic geometries. 
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